Loading [MathJax]/jax/output/HTML-CSS/jax.js
数学の疑問

三角形の合同条件。相似条件と合同条件の違いとは?

 

2つの三角形が合同であることを示すための条件を、三角形の合同条件と言います。

 

 

以下の3つの合同条件のうち、どれか1つでも成り立っているなら「それらの三角形は合同である」ということができます。

 

条件① 3組の辺がそれぞれ等しい

条件② 2組の辺とその間の角がそれぞれ等しい

条件③ 1組の辺とその両端の角がそれぞれ等しい

 


スポンサーリンク

条件① 3組の辺がそれぞれ等しい

3組の辺の長さがそれぞれ等しいとき「それらの三角形は合同である」ということができます。

 

 

上図の場合、AB=DEBC=EFCA=FD で3組の辺の長さがそれぞれ等しいことから、合同となります。

 

合同であることから、A=DB=EC=F であることも分かります。

 

条件② 2組の辺とその間の角がそれぞれ等しい

2組の辺の長さが等しく、その間の角も等しいとき「それらの三角形は合同である」ということができます。

 

 

上図の場合、AB=DEBC=EFB=E で2組の辺の長さとその間の角がそれぞれ等しいことから、合同となります。

 

合同であることから、CA=FDA=DC=F であることも分かります。

 

条件③ 1組の辺とその両端の角がそれぞれ等しい

1組の辺の長さと、その両端の角がそれぞれ等しいとき「それらの三角形は合同である」ということができます。

 

 

上図の場合、BC=EFB=EC=F で1組の辺の長さとその両端の角がそれぞれ等しいことから、合同となります。

 

合同であることから、AB=DECA=FDA=D であることも分かります。

 

Tooda Yuuto
Tooda Yuuto
「1組の辺と2組の角がそれぞれ等しい」だけだと、以下のように合同ではない可能性があります。「1組の辺とその両端の角がそれぞれ等しい」と覚えておきましょう。

 

相似条件と合同条件の違い

最後に、三角形の相似条件と合同条件の比較です。

 

 

相似条件に加えて、「対応する辺の長さがそれぞれ等しい」という条件が加わることで、合同条件になることがわかります。